.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "content/SSHydro/plot_4_pyCATHY_outputs.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_content_SSHydro_plot_4_pyCATHY_outputs.py: Output plots part 1 =================== Weill, S., et al. ยซ Coupling Water Flow and Solute Transport into a Physically-Based Surfaceโ€“Subsurface Hydrological Model ยป. Advances in Water Resources, vol. 34, no 1, janvier 2011, p. 128โ€‘36. DOI.org (Crossref), https://doi.org/10.1016/j.advwatres.2010.10.001. This example shows how to use pyCATHY object to plot the most common ouputs of the hydrological model. *Estimated time to run the notebook = 5min* .. GENERATED FROM PYTHON SOURCE LINES 17-19 Here we need to import `cathy_tools` class that control the CATHY core files preprocessing and processing We also import `cathy_plots` to render the results .. GENERATED FROM PYTHON SOURCE LINES 19-26 .. code-block:: Python from pyCATHY import cathy_tools from pyCATHY.plotters import cathy_plots as cplt import pyvista as pv import os import matplotlib.pyplot as plt .. GENERATED FROM PYTHON SOURCE LINES 27-28 if you add True to verbose, the processor log will be printed in the window shell .. GENERATED FROM PYTHON SOURCE LINES 28-41 .. code-block:: Python path2prj = "weil_exemple_outputs_plot1" # add your local path here simu = cathy_tools.CATHY(dirName=path2prj) simu.run_preprocessor() simu.run_processor(IPRT1=2, DTMIN=1e-2, DTMAX=1e2, DELTAT=5, TRAFLAG=0, verbose=False ) .. rst-class:: sphx-glr-script-out .. code-block:: none ๐Ÿ Initiate CATHY object ๐Ÿณ gfortran compilation ๐Ÿ‘Ÿ Run preprocessor ๐Ÿ”„ Update parm file ๐Ÿ”„ Update hap.in file ๐Ÿ”„ Update dem_parameters file ๐Ÿ”„ Update dem_parameters file ๐Ÿ›  Recompile src files [5s] ๐Ÿณ gfortran compilation [11s] b'' ๐Ÿ‘Ÿ Run processor .. GENERATED FROM PYTHON SOURCE LINES 42-46 .. code-block:: Python df_sw, _ = simu.read_outputs('sw') df_sw.head() .. raw:: html
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 ... 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055
Time
0.00000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 ... 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1895.11582 0.686681 0.688439 0.689260 0.689816 0.690354 0.690762 0.691186 0.691529 0.691910 0.692281 0.692698 0.693121 0.693597 0.694194 0.694924 0.695890 0.697219 0.699154 0.701742 0.708113 0.710240 0.690039 0.690454 0.692535 0.692936 0.693486 0.693991 0.694504 0.694993 0.695479 0.695949 0.696475 0.697041 0.697722 0.698518 0.699569 0.700933 0.702768 0.705330 0.709040 ... 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
3666.91023 0.655817 0.657207 0.657718 0.658108 0.658493 0.658816 0.659167 0.659469 0.659805 0.660141 0.660514 0.660899 0.661331 0.661849 0.662468 0.663246 0.664281 0.665721 0.667496 0.672289 0.673416 0.658255 0.658917 0.660504 0.660679 0.661049 0.661392 0.661745 0.662091 0.662448 0.662803 0.663199 0.663633 0.664152 0.664765 0.665558 0.666576 0.667943 0.669838 0.672429 ... 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
7266.91023 0.626298 0.627181 0.627431 0.627604 0.627765 0.627907 0.628082 0.628229 0.628418 0.628599 0.628833 0.629081 0.629383 0.629768 0.630255 0.630890 0.631756 0.632959 0.634299 0.638162 0.638892 0.627849 0.628339 0.629545 0.629491 0.629659 0.629821 0.630007 0.630190 0.630404 0.630632 0.630904 0.631223 0.631619 0.632116 0.632758 0.633594 0.634705 0.636205 0.638076 ... 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
10866.91020 0.609930 0.610632 0.610809 0.610921 0.611022 0.611111 0.611229 0.611324 0.611452 0.611569 0.611729 0.611895 0.612101 0.612367 0.612711 0.613168 0.613799 0.614689 0.615580 0.618658 0.619467 0.611197 0.611591 0.612642 0.612516 0.612611 0.612698 0.612805 0.612906 0.613033 0.613171 0.613344 0.613556 0.613830 0.614189 0.614665 0.615294 0.616137 0.617280 0.618644 ... 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

5 rows ร— 7056 columns



.. GENERATED FROM PYTHON SOURCE LINES 47-52 .. code-block:: Python node, node_pos = simu.find_nearest_node([5,5,-1]) node2, node_pos2 = simu.find_nearest_node([5,5,1]) print(node_pos[0]) .. rst-class:: sphx-glr-script-out .. code-block:: none [ 5. 5. -1.0725] .. GENERATED FROM PYTHON SOURCE LINES 53-73 .. code-block:: Python pl = pv.Plotter(notebook=False) cplt.show_vtk(unit="pressure", timeStep=1, path=os.path.join(simu.workdir, simu.project_name, 'vtk' ), style='wireframe', opacity=0.1, ax=pl, ) pl.add_points(node_pos[0], color='red' ) pl.add_points(node_pos2[0], color='red' ) pl.show() .. image-sg:: /content/SSHydro/images/sphx_glr_plot_4_pyCATHY_outputs_001.png :alt: plot 4 pyCATHY outputs :srcset: /content/SSHydro/images/sphx_glr_plot_4_pyCATHY_outputs_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none plot pressure .. GENERATED FROM PYTHON SOURCE LINES 74-82 .. code-block:: Python fig, ax = plt.subplots() df_sw[node].plot(ax=ax) df_sw[node2].plot(ax=ax) ax.set_xlabel('time (s)') ax.set_ylabel('saturation (-)') .. image-sg:: /content/SSHydro/images/sphx_glr_plot_4_pyCATHY_outputs_002.png :alt: plot 4 pyCATHY outputs :srcset: /content/SSHydro/images/sphx_glr_plot_4_pyCATHY_outputs_002.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none Text(42.722222222222214, 0.5, 'saturation (-)') .. GENERATED FROM PYTHON SOURCE LINES 83-91 .. code-block:: Python df_psi = simu.read_outputs('psi') # df_psi.head() fig, ax = plt.subplots() ax.plot(df_psi.index, df_psi.iloc[:,node[0]]) ax.plot(df_psi.index, df_psi.iloc[:,node2[0]]) ax.set_xlabel('time (s)') ax.set_ylabel('pressure head (m)') .. image-sg:: /content/SSHydro/images/sphx_glr_plot_4_pyCATHY_outputs_003.png :alt: plot 4 pyCATHY outputs :srcset: /content/SSHydro/images/sphx_glr_plot_4_pyCATHY_outputs_003.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none Text(22.472222222222214, 0.5, 'pressure head (m)') .. rst-class:: sphx-glr-timing **Total running time of the script:** (1 minutes 44.058 seconds) .. _sphx_glr_download_content_SSHydro_plot_4_pyCATHY_outputs.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_4_pyCATHY_outputs.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_4_pyCATHY_outputs.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_4_pyCATHY_outputs.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_