[docs]defget_sw_ens_i(path_fwd_CATHY,**kwargs):"""Return sw array for a given ensemble (if ensemble exist)"""# Get the state vector from kwargs if existing otherwise read output# ------------------------------------------------------------------------if"df_sw"inkwargs:df_sw=kwargs["df_sw"]else:df_sw,_=out_CT.read_sw(os.path.join(path_fwd_CATHY,"output/sw"))# case of open Loop where df_sw is list of nb of assimilation time length# -------------------------------------------------------------------if"time_ass"inkwargs:time_ass=kwargs["time_ass"]df_sw=df_sw.iloc[time_ass,:]DA_cnb=time_ass# case of sequential assimilation# -------------------------------------------------------------------else:df_sw=df_sw.iloc[-1,:]# take the last time# (in case the sw file contains intermediate times for plotting observations)returndf_sw.values
[docs]defget_Archie_ens_i(ArchieParms,Ens_nb):"""Return Archie parameter for a given ensemble (if ensemble exist)"""ArchieParms2parse={}iflen(ArchieParms["rFluid_Archie"])>1:forpin["porosity","rFluid_Archie","a_Archie","m_Archie","n_Archie","pert_sigma_Archie",]:ArchieParms2parse[p]=[ArchieParms[p][Ens_nb]]else:ArchieParms2parse=ArchieParmsreturnArchieParms2parse
[docs]defSW_2_ERa_DA(project_name,ArchieParms,porosity,ERT_meta_dict,path_fwd_CATHY,**kwargs):""" Data Assimilation ----------------- Map saturation water from CATHY model to apparent Electrical Resistivities 1. Import/read CATHY sw file result 2. Convert SW to ER uisng Archie law 3. Fwd ERT model to obtain apparent resistivities (predicted observation for DA) Parameters ---------- project_name : str name of the current project. ArchieParms : dict Archie params. porosity : np.array([]) medium porosity. pathERT : str path of the ERT forward mesh. meshERT : str filename of the ERT fwd mesh. elecs : TYPE electrode positions. sequenceERT : TYPE ERT sequence. path_fwd_CATHY: list of folder containing CATHY simulation outputs Use for // simulations **kwargs : df_sw : pd df saturation mesh values to convert savefig : TYPE, optional DESCRIPTION. The default is True. Returns ------- df_ERT_predicted : pd df Dataframe of predicted ER. df_Archie : pd df Dataframe of the current (given ensemble and given assimilation time) Archie relationship. """path_CATHY=os.path.join(path_fwd_CATHY,"vtk/")# Some flag for DA assimilation# ------------------------------------------------------------------------DA_cnb=NoneEns_nbi=int(os.path.split(path_fwd_CATHY)[-1].split("_",1)[1])-1savefig=Falseif"DA_cnb"inkwargs:DA_cnb=kwargs["DA_cnb"]if"Ens_nbi"inkwargs:Ens_nbi=kwargs["Ens_nbi"]if"savefig"inkwargs:savefig=kwargs["savefig"]# Get sw array for a given ensemble# ------------------------------------df_sw=get_sw_ens_i(path_fwd_CATHY,**kwargs)# Read the input mesh using pyvista# ------------------------------------ifDA_cnbisnotNone:mesh_CATHY_ref=pv.read(os.path.join(path_fwd_CATHY,"vtk/100.vtk"))else:mesh_CATHY_ref=pv.read(os.path.join("vtk/100.vtk"))# Choose archie parameter for a given realisation (from the ensemble)# --------------------------------------------------------------------ArchieParms2parse=get_Archie_ens_i(ArchieParms,Ens_nbi)# Convert to SW to ER values# --------------------------------------------------------------------ER_converted_ti=Archie_rho_DA(rFluid_Archie=ArchieParms2parse["rFluid_Archie"],sat=[df_sw],porosity=ArchieParms2parse["porosity"],a_Archie=ArchieParms2parse["a_Archie"],m_Archie=ArchieParms2parse["m_Archie"],n_Archie=ArchieParms2parse["n_Archie"],pert_sigma_Archie=ArchieParms2parse["pert_sigma_Archie"],)# build df Archie dfdf_Archie=pd.DataFrame(columns=["time","ens_nb","sw","ER_converted"])df_Archie["time"]=DA_cnb*np.ones(len(ER_converted_ti))df_Archie["ens_nbi"]=Ens_nbi*np.ones(len(ER_converted_ti))df_Archie["sw"]=df_swdf_Archie["ER_converted"]=ER_converted_tidf_Archie["porosity"]=ArchieParms2parse["porosity"]*np.ones(len(ER_converted_ti))# print('Correct bug mesh size')# print('-'*12)# print(f'len ER converted vector {len(df_Archie["ER_converted"])}')# print(df_Archie["ER_converted"].describe())# add attribute converted to CATHY mesh# ------------------------------------------------------------------------mesh_CATHY_new_attr,active_attr=mt.add_attribute_2mesh(ER_converted_ti,mesh_CATHY_ref,"ER_converted"+str(DA_cnb),overwrite=True,path=path_CATHY,)# print('-'*12)# print('fwd mesh CATHY')# print(mesh_CATHY_new_attr)# print('-'*12)if"pygimli"inERT_meta_dict["data_format"]:# copy attribute to pg mesh# ------------------------------------------------------------------------mesh_geophy_new_attr,scalar_new=CATHY_2_pg(mesh_CATHY_new_attr,ERT_meta_dict,scalar="ER_converted"+str(DA_cnb),show=False,path=path_CATHY,**kwargs)elif"resipy"inERT_meta_dict["data_format"]:# copy attribute to resipy mesh# ------------------------------------------------------------------------mesh_geophy_new_attr,scalar_new=CATHY_2_Resipy(mesh_CATHY_new_attr,ERT_meta_dict,scalar="ER_converted"+str(DA_cnb),show=False,path=path_CATHY,**kwargs)else:raiseValueError("Mesh format not recognized")res0=mesh_geophy_new_attr.get_array(scalar_new)# print('-'*12)# print('mesh_geophy_new_attr')# print(mesh_geophy_new_attr)# print('-'*12)# print(ERT_meta_dict["forward_mesh_vtk_file"])# import pyvista# mesh2test = pyvista.read(ERT_meta_dict["forward_mesh_vtk_file"])# print('fwd mesh ERT')# print(mesh2test)# print('-'*12)# print('-'*12)# print(len(res0))# print('-'*12)# # print(sss)# # fwd ERT data# import pygimli as pg# print('-'*12)# print(ERT_meta_dict["forward_mesh_vtk_file"])# print(pg.load(ERT_meta_dict["forward_mesh_vtk_file"]))# print('-'*12)# import sys # sys.exit()# ------------------------------------------------------------------------print('fwd ER data')if"pygimli"inERT_meta_dict["data_format"]:ERT_predicted=simuERT.create_ERT_survey_pg(os.path.join(ERT_meta_dict["pathERT"],project_name,"predicted"),sequence=ERT_meta_dict["sequenceERT"],mesh=ERT_meta_dict["forward_mesh_vtk_file"],res0=res0,DAcnb=DA_cnb,pathfig=path_CATHY,**kwargs)elif"resipy"inERT_meta_dict["data_format"]:ERT_predicted=simuERT.create_ERT_survey_Resipy(os.path.join(ERT_meta_dict["pathERT"],project_name,"predicted"),sequence=ERT_meta_dict["sequenceERT"],mesh=ERT_meta_dict["forward_mesh_vtk_file"],res0=res0,**kwargs)# ERT_predicted to dict# ------------------------d={"a":ERT_predicted["a"],"b":ERT_predicted["b"],"k":ERT_predicted["k"],"m":ERT_predicted["m"],"n":ERT_predicted["n"],"rhoa":ERT_predicted["rhoa"],"valid":ERT_predicted["valid"],}df_ERT_predicted=pd.DataFrame(data=d)# savefig = Trueifsavefig:print('backup figures')plotter=pv.Plotter(shape=(3,1),off_screen=True)# notebook = Trueplotter.subplot(0,0)mesh_CATHY_df,name_new_attr_CATHY=mt.add_attribute_2mesh(df_sw[-1],mesh_CATHY_ref,"saturation_df",overwrite=True)mesh_CATHY_df.set_active_scalars("saturation_df")my_colormap="Blues"_=plotter.add_mesh(mesh_CATHY_df,cmap=my_colormap,show_edges=False,# clim=[# 0.3,# 0.7,# ],)# plotter.update_scalar_bar_range([0, 1]) # max saturation is 1plotter.show_grid()plotter.subplot(1,0)mesh_CATHY_new_attr.set_active_scalars(active_attr)_=plotter.add_mesh(mesh_CATHY_new_attr,show_edges=False,clim=[min(mesh_CATHY_new_attr[active_attr]),max(mesh_CATHY_new_attr[active_attr]),],)plotter.show_grid()plotter.view_xz()plotter.subplot(2,0)mesh_geophy_new_attr.set_active_scalars(scalar_new)_=plotter.add_mesh(mesh_geophy_new_attr,show_edges=False,# clim=[# min(mesh_CATHY_new_attr[active_attr]),# max(mesh_CATHY_new_attr[active_attr]),# ],)# if "pygimli" in ERT_meta_dict["data_format"]:plotter.view_xy()# plotter.view_xz()# else:# plotter.view_xz()plotter.show_grid()plotname="suplot_ER"+str(DA_cnb)plotter.save_graphic(path_CATHY+plotname+str(".svg"),title="",raster=True,painter=True)plotter.close()print('end of ER prediction')returndf_ERT_predicted,df_Archie,mesh_CATHY_new_attr
[docs]defArchie_rho_DA(rFluid_Archie=[],sat=[],porosity=[],a_Archie=[1.0],m_Archie=[2.0],n_Archie=[2.0],pert_sigma_Archie=[0],):# This should be moved to DA Class""" Compute ER values at each mesh nodes. If pert_sigma, add a nornal noise of sigma standart deviation and 0 mean (# See eq. 4.4 thesis Isabelle p.95) Parameters ---------- rFluid : list Conductivity of the pore fluid for each soil zone sat : list Water saturation for each soil zone porosity : list Porosity for each soil zone a : list, optional Tortuosity factor. The default is 1.0. m : list, optional Cementation exponent. The default is 2.0.(usually in the range 1.3 -- 2.5 for sandstones) n : list, optional Saturation exponent. The default is 2.0. pert_sigma_Archie: list, optional Normal noise to add to the data Returns ------- rho: Converted Apparent Electrical Resistivity (Ohm.m). """verbose=Trueconsole=rich.console.Console(stderr=True,quiet=notverbose)# Loop over soil type (as many soil type than a_Archie list length)# -----------------------------------------------foriinrange(len(rFluid_Archie)):# loop over Archie heterogeneity i.e. soil zones# print('!!! shortcut sat[:] is not valid for heteregeneous soil!')rho=(rFluid_Archie[i]*a_Archie[i]*porosity[i]**(-m_Archie[i])*sat[i]**(-n_Archie[i]))sigma=1/rho# sat[0]try:# CASE WITH DATA ASSIMILATIONfortiinrange(np.shape(sigma)[0]):# Loop over assimilation timesformeas_nbinrange(np.shape(sigma)[1]):# Loop over mesh nodes# See eq. 4.4 thesis Isabelle p.95# ------------------------------------noise=np.random.normal(0,(pert_sigma_Archie[i]*(sigma[ti,meas_nb]))**2,len(sigma[ti,:]),)sigma[ti,:]=sigma[ti,:]+noiseifi==0:# to avoid displaying this for all the soil layersconsole.rule(":octopus: Parameter perturbation :octopus:",style="green")console.print(""" Archie perturbation for fwd model \n Archie rFluid: {} \n Archie pert_sigma: {} \n Nb of zones (need to check this): {} """.format(rFluid_Archie,pert_sigma_Archie,len(rFluid_Archie)),style="green",)console.rule("",style="green")except:ifi==0:print('Add noise to sigma - See eq. 4.4 thesis Isabelle p.95')formeas_nbinrange(len(sigma)):# Loop over mesh nodes# See eq. 4.4 thesis Isabelle p.95# ------------------------------------noise=np.random.normal(0,(pert_sigma_Archie[i]*(sigma[meas_nb]))**2,1)# See eq. 4.4 thesis Isabelle p.95sigma[meas_nb]=sigma[meas_nb]+noiseprint('max res after Archie')print(np.max(1/sigma))return1/sigma