#!/usr/bin/env python3# -*- coding: utf-8 -*-"""Plotting functions for pyCATHY (2D and 3D)Plotting: - output files - inputs files - petro/pedophysical relationships - Data assimilation results"""importglobimportosimportpyvistaaspvpv.set_plot_theme("document")pv.set_jupyter_backend('static')importdatetimeimportmathimportimageio# import panel as pnimportipywidgetsaswidgetsimportmatplotlibasmplimportmatplotlib.datesasmdatesimportmatplotlib.font_managerimportmatplotlib.pyplotaspltimportmatplotlib.styleimportnatsortimportnumpyasnpimportpandasaspdfrommatplotlibimportcmfrommatplotlib.colorsimportLogNormfrommatplotlib.tickerimportFormatStrFormatterfromscipy.interpolateimportgriddata# from scipy.spatial import Delaunayfromshapely.geometryimportPolygon,MultiPoint,PointfrompyCATHY.cathy_utilsimport(change_x2date,convert_time_units,label_units,transform2_time_delta,)frompyCATHY.importersimportcathy_inputsasin_CTfrompyCATHY.importersimportcathy_outputsasout_CTimportgeopandasasgpdimportrioxarrayasrio# mpl.style.use('default')mpl.rcParams["grid.color"]="k"mpl.rcParams["grid.linestyle"]=":"mpl.rcParams["grid.linewidth"]=0.25# mpl.rcParams['font.family'] = 'Avenir'plt.rcParams["font.size"]=12plt.rcParams["axes.linewidth"]=0.75# nice_fonts = {# # "font.family": "serif",# "font.serif": "Times New Roman",# }# matplotlib.rcParams.update(nice_fonts)#%% ---------------------------------------------------------------------------# -----------------Plot OUTPUTS CATHY -----------------------------------------# -----------------------------------------------------------------------------defcreate_gridded_mask(x,y,**kwargs):buffer=Falseif'buffer'inkwargs:buffer=kwargs['buffer']# points = MultiPoint(np.column_stack((x, y)))points=np.column_stack((x,y))multi_point=MultiPoint(points)boundary=Polygon(points)# interval =100ifbuffer:interval=int(x[1]-x[0])*4boundary=multi_point.buffer(interval/2).buffer(-interval/2)# boundary_coords# Extract the boundary coordinates and create a boolean mask for the region inside the boundaryboundary_coords=np.array(boundary.exterior.coords)xmin,ymin=boundary_coords.min(axis=0)xmax,ymax=boundary_coords.max(axis=0)xi,yi=np.meshgrid(np.linspace(xmin,xmax,50),np.linspace(ymin,ymax,50))xx,yy=xi.flatten(),yi.flatten()mask=[Point(coord).within(boundary)forcoordinzip(xx,yy)]mask=np.array(mask).reshape(xi.shape)returnxi,yi,maskdefplot_WTD(XYZsurface,WT,**kwargs):# FLAG, flag for what has happened# - 1 watertable calculated correctly# - 2 unstaturated zone above saturated zone above unsaturated zone# - 3 watertable not encountered, fully saturated vertical profile# - 4 watertable not encountered, unsaturated profileif"ax"notinkwargs:fig,ax=plt.subplots()else:ax=kwargs["ax"]colorbar=Trueif'colorbar'inkwargs:colorbar=kwargs['colorbar']ti=0if'ti'inkwargs:ti=kwargs['ti']scatter=Falseif'scatter'inkwargs:scatter=kwargs['scatter']ifscatter:valid_kwargs=['vmin','vmax']relevant_kwargs={key:valueforkey,valueinkwargs.items()ifkeyinvalid_kwargs}cmap=ax.scatter(XYZsurface[:,0],XYZsurface[:,1],c=WT[ti],**relevant_kwargs)ax.grid()# cbar = plt.colorbar(cmap,ax=ax)# cbar.set_label('GWD (m)')else:x=XYZsurface[:,0]y=XYZsurface[:,1]cmap='viridis'iftype(ti)islist:z=WT[ti[1]]-WT[ti[0]]cmap='bwr'else:z=WT[ti]xi,yi,mask=create_gridded_mask(x,y)xx,yy=xi.flatten(),yi.flatten()zi=griddata((x,y),z,(xx,yy),method='nearest')# Apply the mask to the gridded datazi_masked=np.ma.masked_where(~mask,zi.reshape(xi.shape))# Plot the masked datacmap=ax.contourf(xi,yi,zi_masked,cmap=cmap)ax.set_xlabel('x (m)')ax.set_ylabel('y (m)')ax.axis('equal')ax.grid(True,linestyle='-.')ifcolorbar:cbar=plt.colorbar(cmap,ax=ax)iftype(ti)islist:cbar.set_label(r'$\Delta$ GWD (m)')else:cbar.set_label('GWD (m)')returncmapdefshow_spatialET(df_fort777,**kwargs):unit='ms-1'unit_str='$ms^{-1}$'if'unit'inkwargs:unit=kwargs.pop('unit')cmap='Blues'if'cmap'inkwargs:cmap=kwargs.pop('cmap')crs=Noneif'crs'inkwargs:crs=kwargs.pop('crs')ti=0if'ti'inkwargs:ti=kwargs.pop('ti')scatter=Falseif'scatter'inkwargs:scatter=kwargs.pop('scatter')mask=Noneif'mask_gpd'inkwargs:mask=kwargs.pop('mask_gpd')clim=Noneif'clim'inkwargs:clim=kwargs.pop('clim')colorbar=Trueif'colorbar'inkwargs:colorbar=kwargs.pop('colorbar')df_fort777_indexes=df_fort777.set_index('time_sec').index.unique().to_numpy()df_fort777_select_t=df_fort777.set_index('time_sec').loc[df_fort777_indexes[ti]]if"ax"notinkwargs:fig,ax=plt.subplots()else:ax=kwargs.pop("ax")# if scatter:df_fort777_select_t=df_fort777_select_t.drop_duplicates()ifunit=='mmday-1':df_fort777_select_t['ACT. ETRA']=df_fort777_select_t['ACT. ETRA']*1e3*86000unit_str='$mm.day^{-1}$'ifmaskisnotNone:polygon=mask.geometry.iloc[0]# Assuming a single polygon in the shapefilefiltered_data=[]foriinrange(len(df_fort777_select_t)):point=gpd.points_from_xy([df_fort777_select_t['X'].iloc[i]],[df_fort777_select_t['Y'].iloc[i]])[0]ifpolygon.contains(point):filtered_data.append([df_fort777_select_t['X'].iloc[i],df_fort777_select_t['Y'].iloc[i],df_fort777_select_t['ACT. ETRA'].iloc[i]])mask.crsfiltered_data=np.vstack(filtered_data)df_fort777_select_t_xr=df_fort777_select_t.set_index(['X','Y']).to_xarray()df_fort777_select_t_xr=df_fort777_select_t_xr.rio.set_spatial_dims('X','Y')df_fort777_select_t_xr.rio.write_crs(mask.crs,inplace=True)df_fort777_select_t_xr_clipped=df_fort777_select_t_xr.rio.clip(mask.geometry)df_fort777_select_t_xr_clipped=df_fort777_select_t_xr_clipped.transpose('Y','X')data_array=df_fort777_select_t_xr_clipped['ACT. ETRA'].valuesdf_fort777_select_t_xr_clipped.rio.bounds()# Plot using plt.imshowcmap=ax.imshow(data_array,cmap=cmap,origin='lower',extent=[min(filtered_data[:,0]),max(filtered_data[:,0]),min(filtered_data[:,1]),max(filtered_data[:,1])],clim=clim,)else:df_fort777_select_t_xr=df_fort777_select_t.set_index(['X','Y']).to_xarray()df_fort777_select_t_xr=df_fort777_select_t_xr.rio.set_spatial_dims('X','Y')ifcrsisnotNone:df_fort777_select_t_xr.rio.write_crs(crs,inplace=True)df_fort777_select_t_xr=df_fort777_select_t_xr.transpose('Y','X')data_array=df_fort777_select_t_xr['ACT. ETRA'].values# Plot using plt.imshowcmap=ax.imshow(data_array,cmap=cmap,origin='lower',extent=[min(df_fort777_select_t['X']),max(df_fort777_select_t['X']),min(df_fort777_select_t['Y']),max(df_fort777_select_t['Y'])],clim=clim,)title='ETa'if'title'inkwargs:title=kwargs['title']ax.set_title(title)ax.set_xlabel('x (m)')ax.set_ylabel('y (m)')# ax.axis('equal')ax.grid(True,linestyle='-.')ifcolorbar:cbar=plt.colorbar(cmap,ax=ax)cbar.set_label('ETa '+unit_str)returncmap
[docs]defshow_wtdepth(df_wtdepth=[],workdir=[],project_name=[],**kwargs):""" plot NET SEEPFACE VOL and NET SEEPFACE FLX over the time t """# read hgraph file if df_hgraph not existing# ------------------------------------------------------------------------iflen(df_wtdepth)==0:df_wtdepth=out_CT.read_wtdepth(filename="wtdepth")# fig, ax = plt.subplots(2,1)# if 'delta_t' in kwargs:# df_wtdepth['time'] = pd.to_timedelta(df_wtdepth['time'],unit='s')if"ax"notinkwargs:fig,ax=plt.subplots()else:ax=kwargs["ax"]ax.plot(df_wtdepth["time (s)"],df_wtdepth["water table depth (m)"])ax.set_title("Water table depth")ax.set(xlabel="Time (s)",ylabel="Water table depth (m)")# ax.legend(["Total flow volume", "nansfdir flow volume"])pass
[docs]defshow_hgsfdet(df_hgsfdeth=[],workdir=[],project_name=[],**kwargs):""" plot NET SEEPFACE VOL and NET SEEPFACE FLX over the time t. """# read hgraph file if df_hgraph not existing# ------------------------------------------------------------------------iflen(df_hgsfdeth)==0:df_hgsfdeth=out_CT.read_hgsfdet(filename="hgsfdeth")fig,ax=plt.subplots(2,1)if"delta_t"inkwargs:df_hgsfdeth["time"]=pd.to_timedelta(df_hgsfdeth["time"],unit="s")df_hgsfdeth.pivot_table(values="NET SEEPFACE VOL",index="time").plot(ax=ax[0],ylabel="NET SEEPFACE VOL",xlabel="time (s)")df_hgsfdeth.pivot_table(values="NET SEEPFACE FLX",index="time").plot(ax=ax[1],ylabel="NET SEEPFACE FLX",xlabel="time (s)")returnfig,ax
[docs]defshow_dtcoupling(df_dtcoupling=[],workdir=[],project_name=[],x="time",yprop="Atmact-vf",**kwargs):""" plot dtcoupling """if"yprop"inkwargs:yprop=kwargs["yprop"]# read hgraph file if df_hgraph not existing# ------------------------------------------------------------------------if"ax"notinkwargs:fig,ax=plt.subplots()else:ax=kwargs["ax"]iflen(df_dtcoupling)==0:df_dtcoupling=out_CT.read_dtcoupling(filename="dtcoupling")nstep=len(df_dtcoupling["Atmpot-d"])jmax=max(df_dtcoupling["Atmact-vf"])timeatm=[df_dtcoupling["Deltat"][0]]foriinnp.arange(1,nstep):timeatm.append(timeatm[i-1]+df_dtcoupling["Deltat"][i-1])len(timeatm)ax.step(timeatm,df_dtcoupling[yprop],color="green",where="post",label=yprop,# ax=ax)# plt.step(timeatm, df_dtcoupling[yprop[1]], color="blue", where="post", label=yprop[1])ax.set_xlabel("time (s)")ax.set_ylabel(label_units(yprop))plt.legend()
[docs]defshow_hgraph(df_hgraph=[],workdir=[],project_name=[],x="time",y="SW",**kwargs):""" plot hgraph """# read hgraph file if df_hgraph not existing# ------------------------------------------------------------------------iflen(df_hgraph)==0:df_hgraph=out_CT.read_hgraph(filename="hgraph")if"ax"notinkwargs:fig,ax=plt.subplots()else:ax=kwargs["ax"]if"delta_t"inkwargs:df_hgraph["time"]=pd.to_timedelta(df_hgraph["time"],unit="s")df_hgraph.pivot_table(values="streamflow",index="time").plot(ax=ax,ylabel="streamflow ($m^3/s$)",xlabel="time (s)",marker=".")
[docs]defshow_COCumflowvol(df_cumflowvol=[],workdir=None,project_name=None,**kwargs):""" plot COCumflowvol """# read file if df_cumflowvol not existing# ------------------------------------------------------------------------iflen(df_cumflowvol)==0:df_cumflowvol=out_CT.read_cumflowvol(os.path.join(workdir,project_name,"output","cumflowvol"))# plot Net Flow Volume (m^3) = f(time)# ------------------------------------------------------------------------if"ax"notinkwargs:fig,ax=plt.subplots()else:ax=kwargs["ax"]ax.plot(df_cumflowvol[:,2],-df_cumflowvol[:,7],"b-.")ax.plot(df_cumflowvol[:,2]/3600,df_cumflowvol[:,7])ax.set_title("Cumulative flow volume")ax.set(xlabel="Time (s)",ylabel="Net Flow Volume (m^3)")ax.legend(["Total flow volume","nansfdir flow volume"])
[docs]defshow_vp_DEPRECATED(df_vp=[],workdir=[],project_name=[],index="time",x="time",y="SW",**kwargs):""" plot vp DEPRECATED use psi and sw reader instead and plot using pandas after find_nearest_node search. """# read vp file if df_atmbc not existing# ------------------------------------------------------------------------iflen(df_vp)==0:df_vp=out_CT.read_vp(filename="vp")node_uni=df_vp["node"].unique()fig,ax=plt.subplots(1,len(node_uni))iflen(node_uni)<2:ax=[ax]colors=cm.Reds(np.linspace(0.2,0.8,len(df_vp["str_nb"].unique())))fori,ninenumerate(node_uni):df_vp_pivot=pd.pivot_table(df_vp,values=y,index=["time","node","str_nb"])df_vp_pivot_nodei=df_vp_pivot.xs(n,level="node")df_vp_pivot_nodei.unstack("str_nb").plot(ax=ax[i],title="node: "+str(n),color=colors)ax[i].legend([])label=label_units(y)ifi==0:ax[i].set_ylabel(label)returnfig,ax
[docs]defshow_vtk(filename=None,unit="pressure",timeStep=0,notebook=False,path=None,savefig=False,ax=None,**kwargs,):""" Plot vtk file using pyvista Parameters ---------- filename : str, optional Name of the file. The default is None. unit : str, optional ['pressure', 'saturation', 'ER', 'permeability', 'velocity'] . The default is pressure. timeStep : int, optional Time step to plot. The default is 0. notebook : bool, optional Option to plot in a notebook. The default is False. path : str, optional Path of the vtk file. The default is None. savefig : bool, optional Save figure. The default is False. **kwargs : mainly plotting adjustements to pass into Pyvista. """my_colormap="viridis"ifpathisNone:path=os.getcwd()legend=Trueif'legend'inkwargs:legend=kwargs.pop('legend')# Parse physical attribute + cmap from unit# -------------------------------------------------------------------------iffilenameisNone:# for surface/subsurface hydrology# --------------------------------------------------------------------ifunit=="pressure":my_colormap="autumn"elifunit=="saturation":my_colormap="Blues"iftimeStep<10:filename="10"+str(timeStep)+".vtk"eliftimeStep<100:filename="1"+str(timeStep)+".vtk"eliftimeStep<200:newnb=[int(x)forxinstr(timeStep)]filename="2"+str(newnb[1])+str(newnb[2])+".vtk"eliftimeStep<300:newnb=[int(x)forxinstr(timeStep)]filename="3"+str(newnb[1])+str(newnb[2])+".vtk"# for transport# --------------------------------------------------------------------elifunit=="celerity":raiseNotImplementedError("Transport vtk file output not yet implemented")# for ERT# --------------------------------------------------------------------elif"ER"inunit:filename="ER_converted"+str(timeStep)+".vtk"my_colormap="viridis"unit="ER_converted"+str(timeStep)elif"ER_int"inunit:filename="ER_converted"+str(timeStep)+"_nearIntrp2_pg_msh.vtk"my_colormap="viridis"unit="ER_converted"+str(timeStep)+"_nearIntrp2_pg_msh"ifunit=='PERMX':my_colormap=Noneprint('No colormap')print(my_colormap)if'cmap'inkwargs:my_colormap=kwargs.pop('cmap')show_edges=Trueif"show_edges"inkwargs:show_edges=kwargs['show_edges']mesh=pv.read(os.path.join(path,filename))ifunitinlist(mesh.array_names):print("plot "+str(unit))else:print("physcial property not existing")# notebook = activate widgets# -------------------------------------------------------------------------ifnotebook:ifaxisNone:ax=pv.Plotter(notebook=notebook)# pn.extension('vtk') # this needs to be at the top of each cell for some reasonout=widgets.Output()defon_value_change(change):without:PhysScalars="pressure"time_step=timeStep# print(change['new'])ifhasattr(change.owner,"options"):# =='Phys. prop:':PhysScalars=change.owner.options[change["new"]-1]else:time_step=change["new"]out.clear_output()mesh=pv.read("./my_cathy_prj/vtk/10"+str(time_step)+".vtk")_=ax.add_mesh(mesh,scalars=PhysScalars[0],cmap=my_colormap,**kwargs)ifunit=="saturation":ax.update_scalar_bar_range([0,1])if"clim"inkwargs:ax.update_scalar_bar_range([kwargs["clim"][0],1])legend_entries=[]legend_entries.append(["Time="+str(mesh["time"]),"w"])_=ax.add_legend(legend_entries)ax.show_grid()cpos=ax.show(True)slider=widgets.IntSlider(min=0,max=10,step=1,continuous_update=True,description="Time step #:",)# play = widgets.Play(min=1, interval=2000)choice=widgets.Dropdown(options=[("pressure",1),("saturation",2)],value=1,description="Phys. prop:",)slider.observe(on_value_change,"value")choice.observe(on_value_change,"value")plotvtk=widgets.VBox([choice,slider,out])plotvtk# No notebook interaction# -------------------------------------------------------------------------else:ifaxisNone:ax=pv.Plotter(notebook=False)_=ax.add_mesh(mesh,scalars=unit,cmap=my_colormap,**kwargs)ifunit=="saturation":ax.update_scalar_bar_range([0,1])if"clim"inkwargs:ax.update_scalar_bar_range([kwargs["clim"][0],kwargs["clim"][1]])# add time stamp as legendiflegend:legend_entries=[]time_delta=transform2_time_delta(mesh["TIME"],"s")legend_entries.append(["Time="+str(time_delta[0]),"w"])_=ax.add_legend(legend_entries)_=ax.show_bounds(minor_ticks=True,font_size=1)# add scatter points to the plot# ---------------------------------------------------------------------forkey,valueinkwargs.items():# add electrodes positions# -----------------------------------------------------------------ifkey=="elecs":poly_elecs=pv.PolyData(value)poly_elecs["My Labels"]=[f"Label {i}"foriinrange(poly_elecs.n_points)]ax.add_point_labels(poly_elecs,"My Labels",point_size=20,font_size=36)# add tensiometers positions# -----------------------------------------------------------------# add TDR probe positions# -----------------------------------------------------------------ifsavefigisTrue:ax.view_xz()cpos=ax.show(screenshot=os.path.join(path,filename+unit+".png"))print("figure saved"+os.path.join(path,filename+unit+".png"))ax.close()pass
[docs]defshow_vtk_TL(filename=None,unit="pressure",timeStep="all",notebook=False,path=None,savefig=True,show=True,**kwargs,):""" Time lapse animation of selected time steps Parameters ---------- filename : str, optional DESCRIPTION. The default is None. unit : TYPE, optional DESCRIPTION. The default is None. timeStep : TYPE, optional DESCRIPTION. The default is "all". notebook : bool, optional DESCRIPTION. The default is False. path : TYPE, optional DESCRIPTION. The default is None. savefig : TYPE, optional DESCRIPTION. The default is False. show : TYPE, optional DESCRIPTION. The default is True. """x_units=Nonexlabel="s"# for key, value in kwargs.items():if"x_units"inkwargs:x_units=kwargs.pop('x_units')print(x_units)ifpathisNone:path=os.getcwd()iffilenameisNone:ifunit=="pressure":filename="1*.vtk"filename0="100.vtk"my_colormap="autumn"elifunit=="saturation":my_colormap="Blues"filename="1*.vtk"filename0="100.vtk"elif"ER"inunit:filename="ER"+str(timeStep)+".vtk"my_colormap="viridis"mesh=pv.read(os.path.join(path,filename0))ifunitinlist(mesh.array_names):print("plot "+str(unit))else:print("physcial property not existing")offscreen=Trueifshow==False:offscreen=Trueplotter=pv.Plotter(notebook=notebook,off_screen=offscreen,)# print('*'*10)# print(unit)plotter.add_mesh(mesh,scalars=unit,cmap=my_colormap,# opacity=0.3,**kwargs,)ifsavefig:plotter.open_gif(os.path.join(path+unit+".gif"))plotter.add_scalar_bar(title=unit)# options to colorbar# ---------------------------------------------------------------------if"clim"inkwargs:plotter.update_scalar_bar_range([kwargs["clim"][0],kwargs["clim"][1]])legend_entry="Time= "+str(mesh["TIME"])print(legend_entry)ifx_unitsisnotNone:xlabel,t_lgd=convert_time_units(mesh["TIME"],x_units)legend_entry="Time="+str(t_lgd)+xlabelplotter.show_grid()cpos=plotter.show(auto_close=False)plotter.add_text(legend_entry,name="time-label")files=[]forfileinglob.glob(os.path.join(path,filename)):files.append(file)forffinnatsort.natsorted(files,reverse=False):print(ff)mesh=pv.read(ff)array_new=mesh.get_array(unit)print(mesh["TIME"])ifx_unitsisnotNone:xlabel,t_lgd=convert_time_units(mesh["TIME"],x_units)legend_entry="Time="+str(t_lgd)+xlabel# print(array_new)plotter.update_scalars(array_new,render=True)plotter.add_text(legend_entry,name="time-label")plotter.render()# plotter.write_frame(False)ifunit=="saturation":plotter.update_scalar_bar_range([0,1])if"clim"inkwargs:plotter.update_scalar_bar_range([kwargs["clim"][0],kwargs["clim"][1]])plotter.write_frame()plotter.close()ifsavefig:gif_original=os.path.join(path+unit+".gif")gif_speed_down=os.path.join(path+unit+"_slow.gif")gif=imageio.mimread(gif_original)imageio.mimsave(gif_speed_down,gif,duration=1800)print("gif saved"+os.path.join(path,gif_original))return
[docs]defshow_atmbc(t_atmbc,v_atmbc,ax=None,**kwargs):""" Plot atmbc=f(time) Parameters ---------- t_atmbc : np.array time where atmbc change. v_atmbc : list of 1 or 2 arrays (when available) v_atmbc[0] is the array of Rain/Irrigation change over the time; v_atmbc[1] is the array of ET demand over the time; """# NOT YET IMPLEMETED# read atmbc file if df_atmbc not existing# ------------------------------------------------------------------------# df_atmbc = []# if len(df_atmbc)==0:# df_atmbc = out_CT.read_atmbc(filename='vp')xlabel="time (s)"forkey,valueinkwargs.items():ifkey=="x_units":x_units=valueifx_units=="days":xlabel="time (days)"t_atmbc=[x/(24*60*60)forxint_atmbc]ifx_units=="hours":xlabel="time (h)"t_atmbc=[x/(60*60)forxint_atmbc]if"datetime"inkwargs:t_atmbc=kwargs["datetime"]xlabel="date"# https://matplotlib.org/stable/gallery/lines_bars_and_markers/stairs_demo.html#sphx-glr-gallery-lines-bars-and-markers-stairs-demo-pyv_atmbc_n=[]ifisinstance(v_atmbc,list):try:np.shape(v_atmbc)[1]v_atmbc_p=v_atmbc[1]# positifv_atmbc_n=v_atmbc[0]# negatifv_atmbc=v_atmbc[0]-v_atmbc[1]except:pass# if np.shape(t_atmbc) != np.shape(v_atmbc):iflen(v_atmbc_n)>0:ifaxisNone:fig,ax=plt.subplots(2,1,sharex=True)(ax1,ax2)=(ax[0],ax[1])color="tab:blue"ax1.set_xlabel("time (h)")ax1.set_ylabel("Rain/Irr",color=color)ax1.step(t_atmbc,v_atmbc_p,color="blue",where="post",label="Rain/Irr")color="tab:red"ax2.set_ylabel("ET",color=color)# we already handled the x-label with ax1ax2.step(t_atmbc,-v_atmbc_n,color=color,where="post",label="ET")ax2.tick_params(axis="y",labelcolor=color)fig.tight_layout()# otherwise the right y-label is slightly clipped# plt.show(block=False)else:ifaxisNone:fig,ax=plt.subplots(figsize=(6,3))ax.plot(t_atmbc,v_atmbc,"k.")ax.set(xlabel=xlabel,ylabel="net Q (m/s)",title="atmbc inputs")ax.grid()# plt.show(block=False)if"IETO"inkwargs:ifkwargs["IETO"]!=0:plt.step(t_atmbc,v_atmbc,color="k",where="post")elifkwargs["IETO"]==0:# case of linear interpolation between pointsax.plot(t_atmbc,v_atmbc,"k.")pass
[docs]defshow_soil(soil_map,ax=None,**kwargs):""" View from top of the soil prop Parameters ---------- soil_map : DataFrame() Dataframe containing soil properties for the DEM """yprop="PERMX"if"yprop"inkwargs:yprop=kwargs.pop("yprop")layer_nb="1"if"layer_nb"inkwargs:layer_nb=kwargs.pop("layer_nb")cmap="tab10"nb_of_zones=len(np.unique(soil_map))cmap=mpl.colors.ListedColormap(plt.cm.tab10.colors[:nb_of_zones])if"cmap"inkwargs:cmap=kwargs.pop("cmap")ifaxisNone:fig,ax=plt.subplots()# linewidth = 1# if 'linewidth' in kwargs:# linewidth = kwargs['linewidth']cf=ax.pcolormesh(soil_map,edgecolors="black",cmap=cmap,**kwargs,)if"clim"inkwargs:clim=kwargs["clim"]else:clim=[min(soil_map.flatten()),max(soil_map.flatten())]cf.set_clim(clim[0],clim[1])cax=plt.colorbar(cf,ticks=np.linspace(clim[0],clim[1],nb_of_zones),ax=ax,label=yprop,)# try:# cax.set_ticklabels(range(int(min(soil_map.flatten())), nb_of_zones))cax.ax.set_yticklabels(["{:.1e}".format(x)forxinnp.linspace(clim[0],clim[1],nb_of_zones)])# ,# fontsize=16,# )ax.set_xlabel("x")ax.set_ylabel("y")ax.set_title("view from top (before extruding), layer nb"+str(layer_nb))# plt.show(block=False)# plt.close()returncf
[docs]defshow_zone(zone_map,**kwargs):""" View from top of the vegetation type (equivalent somehow to root map) Parameters ---------- veg_map : np.array([]) Indice of vegetation. The dimension of the vegetation map must match the dimension of the DEM. """# cmap='tab10'nb_of_zones=len(np.unique(zone_map))cmap=mpl.colors.ListedColormap(plt.cm.tab10.colors[:nb_of_zones])if"cmap"inkwargs:cmap=kwargs["cmap"]fig,ax=plt.subplots()cf=ax.pcolormesh(zone_map,edgecolors="black",cmap=cmap)# cbar = fig.colorbar(cf, ax=ax, label='indice of zones')cax=plt.colorbar(cf,ticks=np.linspace(int(min(zone_map.flatten())),int(max(zone_map.flatten())),nb_of_zones+1),ax=ax,label="indice of zones",)cax.set_ticklabels(range(int(min(zone_map.flatten())),nb_of_zones+2))ax.set_xlabel("x")ax.set_ylabel("y")ax.set_title("view from top (before extruding)")plt.show(block=False)plt.close()returnfig,ax
[docs]defshow_indice_veg(veg_map,ax=None,**kwargs):""" View from top of the vegetation type (equivalent somehow to root map) Parameters ---------- veg_map : np.array([]) Indice of vegetation. The dimension of the vegetation map must match the dimension of the DEM. """# cmap='tab10'nb_of_zones=len(np.unique(veg_map))cmap=mpl.colors.ListedColormap(plt.cm.tab10.colors[:nb_of_zones])if"cmap"inkwargs:cmap=kwargs.pop("cmap")ifaxisNone:fig,ax=plt.subplots()cf=ax.pcolormesh(veg_map,edgecolors="black",cmap=cmap,**kwargs)# fig.colorbar(cf, ax=ax, label='indice of vegetation')cax=plt.colorbar(cf,ticks=np.arange(int(min(veg_map.flatten())),int(max(veg_map.flatten()))+1),ax=ax,label="indice of vegetation",)# cax.set_ticklabels(range(int(min(veg_map.flatten())), nb_of_zones + 2))cax.set_ticklabels(np.arange(int(min(veg_map.flatten())),int(max(veg_map.flatten()))+1# nb_of_zones + 1))cax.ax.set_yticklabels(["{:d}".format(int(x))forxinnp.arange(min(veg_map.flatten())-1,max(veg_map.flatten()))])ax.set_xlabel("x")ax.set_ylabel("y")ax.set_title("view from top (before extruding)")# plt.show(block=False)# plt.close()returnax
[docs]defdem_plot_2d_top(parameter,label="",**kwargs):""" View of the DEM from top of the a given parameter (Not yet implemented) Possible parameters are: - vegetation - altitude """iflabel=="all":fig,axs=plt.subplots(int(len(parameter.keys())/2),int(len(parameter.keys())/3),sharex=True,sharey=True,)forax,pinzip(axs.reshape(-1),parameter.keys()):cf=ax.pcolormesh(parameter[p])# edgecolors="black"fig.colorbar(cf,ax=ax,label=p,fraction=0.046,pad=0.04,shrink=0.8)ax.set_xlabel("x")ax.set_ylabel("y")ax.set_aspect("auto","box")plt.tight_layout()plt.show(block=False)else:fig,ax=plt.subplots()cf=ax.pcolormesh(parameter,edgecolors="black")fig.colorbar(cf,ax=ax,label=label)ax.set_xlabel("x")ax.set_ylabel("y")ax.set_title("view from top (before extruding)")plt.show(block=False)returnfig,ax
[docs]defget_dem_coords(dem_mat=[],hapin={}):# if len(dem_mat) == 0:# # Read the Header# dem_mat, str_hd_dem = in_CT.read_dem(# os.path.join(workdir, project_name, "prepro/dem"),# os.path.join(workdir, project_name, "prepro/dtm_13.val"),# )# transpose because values in dtm_13 files from where the DEM raster is extracted are transposed ...# dem_mat = dem_mat.T# dem_mat = np.flipud(dem_mat)# print(dem_mat)x=np.zeros(dem_mat.shape[1])# + hapin["xllcorner"]y=np.zeros(dem_mat.shape[0])# + hapin["yllcorner"]# print(x)# print(str_hd_dem)forainrange(0,dem_mat.shape[1]):x[a]=float(hapin["xllcorner"])+hapin["delta_x"]*(a+1)-hapin["delta_x"]/2forainrange(0,dem_mat.shape[0]):y[a]=float(hapin["yllcorner"])+hapin["delta_y"]*(a+1)-hapin["delta_y"]/2returnx,np.flipud(y)# np.flipud(dem_mat)
[docs]defshow_dem(dem_mat=[],hapin={},ax=None,**kwargs,):""" Creates a 3D representation from a Grass DEM file """# np.shape(dem_mat)x,y=get_dem_coords(dem_mat,hapin)ifaxisNone:fig=plt.figure()ax=fig.add_subplot(projection="3d")X,Y=np.meshgrid(x,y)dem_mat[dem_mat==-9999]=np.nansurf=ax.plot_surface(X,Y,dem_mat,cmap="viridis",**kwargs)# surf = ax.plot_surface(Y,X, dem_mat, cmap="viridis",**kwargs)cbar=plt.colorbar(surf,shrink=0.25,orientation="horizontal",label="Elevation (m)")ax.set(xlabel="Easting (m)",ylabel="Northing (m)",zlabel="Elevation (m)")# plt.show(block=False)# plt.close()ax.yaxis.set_major_formatter(FormatStrFormatter("%3.4e"))ax.xaxis.set_major_formatter(FormatStrFormatter("%3.4e"))pass
[docs]defDA_RMS(df_performance,sensorName,**kwargs):"""Plot result of Data Assimilation: RMS evolution over the time"""if"ax"inkwargs:ax=kwargs["ax"]# else:# if "start_date" in kwargs:# fig, ax = plt.subplots(3, 1, sharex=True)# else:# fig, ax = plt.subplots(2, 1)keytime="time"xlabel="assimilation #"start_date=Nonekeytime="time"xlabel="assimilation #"ifkwargs.get("start_date")isnotNone:keytime="time_date"xlabel="date"atmbc_times=Noneif"atmbc_times"inkwargs:atmbc_times=kwargs["atmbc_times"]header=["time","ObsType","RMSE"+sensorName,"NMRMSE"+sensorName,"OL"]df_perf_plot=df_performance[header]df_perf_plot["RMSE"+sensorName]=df_perf_plot["RMSE"+sensorName].astype("float64")df_perf_plot["NMRMSE"+sensorName]=df_perf_plot["NMRMSE"+sensorName].astype("float64")df_perf_plot.OL=df_perf_plot.OL.astype("str")df_perf_plot.dropna(inplace=True)# len(dates)# len(df_perf_plot["time"])# len(atmbc_times)ifstart_dateisnotNone:dates=change_x2date(atmbc_times,start_date)df_perf_plot["time_date"]=df_perf_plot["time"].replace(list(df_perf_plot["time"].unique()),dates)p0=df_perf_plot.pivot(index=keytime,columns="OL",values="RMSE"+sensorName)p1=df_perf_plot.pivot(index=keytime,columns="OL",values="NMRMSE"+sensorName)if"start_date"inkwargs:p0.plot(xlabel=xlabel,ylabel="RMSE"+sensorName,ax=ax[1],style=[".-"])p1.plot(xlabel=xlabel,ylabel="NMRMSE"+sensorName,ax=ax[2],style=[".-"])else:p0.plot(xlabel=xlabel,ylabel="RMSE"+sensorName,ax=ax[0],style=[".-"])p1.plot(xlabel=xlabel,ylabel="NMRMSE"+sensorName,ax=ax[1],style=[".-"])returnax,plt
[docs]defDA_plot_parm_dynamic(parm="ks",dict_parm_pert={},list_assimilation_times=[],savefig=False,**kwargs):"""Plot result of Data Assimilation: parameter estimation evolution over the time"""ensemble_size=len(dict_parm_pert[parm]["ini_perturbation"])# nb_times = len(df_DA['time'].unique())# fig = plt.figure(figsize=(6, 3), dpi=150)if'ax'inkwargs:ax=kwargs['ax']else:fig,ax=plt.subplots()ax.hist(dict_parm_pert[parm]["ini_perturbation"],ensemble_size,alpha=0.5,label="ini_perturbation",)ax.legend(loc="upper right")ax.set_ylabel("Probability")forntinlist_assimilation_times:try:ax.hist(dict_parm_pert[parm]["update_nb"+str(int(nt+1))],ensemble_size,alpha=0.5,label="update nb"+str(int(nt+1)),)except:passax.legend(loc="upper right")ax.set_ylabel("Probability")if"log"inkwargs:ifkwargs["log"]:ax.set_xscale("log")# plt.show()returnax
[docs]defDA_plot_parm_dynamic_scatter(parm="ks",dict_parm_pert={},list_assimilation_times=[],savefig=False,**kwargs):"""Plot result of Data Assimilation: parameter estimation evolution over the time"""if"ax"inkwargs:ax=kwargs["ax"]else:fig=plt.figure(figsize=(6,3),dpi=350)ax=fig.add_subplot()ensemble_size=len(dict_parm_pert[parm]["ini_perturbation"])mean_t=[np.mean(dict_parm_pert[parm]["ini_perturbation"])]mean_t_yaxis=np.mean(dict_parm_pert[parm]["ini_perturbation"])cloud_t=np.zeros([ensemble_size,len(list_assimilation_times)])cloud_t[:,0]=np.array(dict_parm_pert[parm]["ini_perturbation"])np.shape(cloud_t)try:forntinlist_assimilation_times[1:]:cloud_t[:,int(nt+1)]=np.hstack(dict_parm_pert[parm]["update_nb"+str(int(nt))])except:passdict_parm_new={}name=[]i=0forkindict_parm_pert[parm].keys():if"upd"ink:dict_parm_new[parm+"_"+k]=np.hstack(dict_parm_pert[parm][k])name.append(str(i+1))i=i+1df=pd.DataFrame()df=pd.DataFrame(data=dict_parm_new)df.index.name="Ensemble_nb"color='k'if"color"inkwargs:color=kwargs["color"]iflen(df.columns)>15:# nii = [int(ni) for ni in np.arange(0,len(df.columns),6)]name=[str(ni+1)forniinlist_assimilation_times]df=df.iloc[:,list_assimilation_times]boxplot=df.boxplot(color=color,ax=ax,grid=False,flierprops=dict(marker='o',color='black',markersize=5))boxplot.set_xticklabels(name,# rotation=90)ax.set_ylabel(parm)ax.set_xlabel("assimilation #")if"log"inkwargs:ifkwargs["log"]:boxplot.set_yscale("log")returnax
[docs]defprepare_DA_plot_time_dynamic(DA,state="psi",nodes_of_interest=[],**kwargs):"""Select data from DA_df dataframe"""keytime="time"start_date=Nonexlabel="time (h)"ifkwargs.get("start_date")isnotNone:start_date=kwargs["start_date"]keytime="time_date"if"keytime"inkwargs:keytime=kwargs['keytime']atmbc_times=Noneif"atmbc_times"inkwargs:atmbc_times=kwargs["atmbc_times"]ifstart_dateisnotNone:dates=change_x2date(atmbc_times,start_date)iflen(dates)<len(list(DA["time"].unique())):DA=DA.drop(DA[DA.time+1>=len(list(DA["time"].unique()))].index)iflen(dates)>len(list(DA["time"].unique())):# check if contains difference in time otherwise add articifially 1s to keep# the formatting. (Else plot crashes)ifall(dates[:len(list(DA["time"].unique()))].hour==0):time_delta_change=datetime.timedelta(seconds=1)dates.values[0]=dates[0]+time_delta_changedates=dates[:len(list(DA["time"].unique()))]unique_times=DA["time"].unique()DA["time_date"]=DA["time"].map(dict(zip(unique_times,dates)))isOL=DA.loc[DA["OL"]==True]isENS=DA.loc[DA["OL"]==False]isENS_time_Ens=isENS.set_index(["time","Ensemble_nb"])isOL_time_Ens=isOL.set_index(["time","Ensemble_nb"])iftype(nodes_of_interest)!=list:nodes_of_interest=[nodes_of_interest]NENS=int(max(DA["Ensemble_nb"].unique()))key2plot="psi_bef_update"if"sw"instate:key2plot="sw_bef_update_"if"key2plot"inkwargs:key2plot=kwargs["key2plot"]prep_DA={"isENS":isENS,"isOL":isOL,}# -----------------------------#iflen(nodes_of_interest)>0:iflen(isOL)>0:nb_of_times=len(np.unique(isOL["time"]))nb_of_ens=len(np.unique(isOL["Ensemble_nb"]))nb_of_nodes=len(isOL[isOL["time"]==0])/nb_of_enstest=len(isOL)/nb_of_nodestry:int(test)except:ValueError("inconsistent nb of OL data - no plot")passelse:isOL.insert(2,"idnode",np.tile(np.arange(nb_of_nodes),nb_of_times*nb_of_ens),True,)select_isOL=isOL[isOL["idnode"].isin(nodes_of_interest)]select_isOL=select_isOL.set_index([keytime,"idnode"])select_isOL=select_isOL.reset_index()# mean, min and max of Open Loop# --------------------------------------------------------------------------ens_mean_isOL_time=(select_isOL.set_index([keytime,"Ensemble_nb","idnode"]).groupby(level=[keytime,"idnode"])[key2plot].mean())ens_mean_isOL_time=ens_mean_isOL_time.reset_index(name="mean(ENS)_OL")ens_min_isOL_time=(select_isOL.set_index([keytime,"Ensemble_nb","idnode"]).groupby(level=[keytime,"idnode"])[key2plot].min())ens_min_isOL_time=ens_min_isOL_time.reset_index(name="min(ENS)_OL")ens_max_isOL_time=(select_isOL.set_index([keytime,"Ensemble_nb","idnode"]).groupby(level=[keytime,"idnode"])[key2plot].max())ens_max_isOL_time=ens_max_isOL_time.reset_index(name="max(ENS)_OL")prep_DA.update({"ens_mean_isOL_time":ens_mean_isOL_time,"ens_max_isOL_time":ens_max_isOL_time,"ens_min_isOL_time":ens_min_isOL_time,})iflen(isENS)>0:nb_of_times=len(np.unique(isENS["time"]))nb_of_ens=len(np.unique(isENS["Ensemble_nb"]))nb_of_nodes=len(isENS[isENS["time"]==isENS["time"][0]])/nb_of_ensiflen(isOL)>0:isENS.insert(2,"idnode",np.tile(np.arange(int(len(isENS)/(max(isENS["time"])*(NENS)))),int(max(isENS["time"]))*(NENS),),True,)else:isENS.insert(2,"idnode",np.tile(np.arange(nb_of_nodes),nb_of_times*nb_of_ens),True,)check_notrejected=isENS['rejected']==0isENS=isENS[check_notrejected]select_isENS=isENS[isENS["idnode"].isin(nodes_of_interest)]select_isENS=select_isENS.set_index([keytime,"idnode"])select_isENS=select_isENS.reset_index()# mean, min and max of Open Loop# --------------------------------------------------------------------------ens_mean_isENS_time=(select_isENS.set_index([keytime,"Ensemble_nb","idnode"]).groupby(level=[keytime,"idnode"])[key2plot].mean())ens_mean_isENS_time=ens_mean_isENS_time.reset_index(name="mean(ENS)")ens_min_isENS_time=(select_isENS.set_index([keytime,"Ensemble_nb","idnode"]).groupby(level=[keytime,"idnode"])[key2plot].min())ens_min_isENS_time=ens_min_isENS_time.reset_index(name="min(ENS)")ens_max_isENS_time=(select_isENS.set_index([keytime,"Ensemble_nb","idnode"]).groupby(level=[keytime,"idnode"])[key2plot].max())ens_max_isENS_time=ens_max_isENS_time.reset_index(name="max(ENS)")prep_DA.update({"ens_mean_isENS_time":ens_mean_isENS_time,"ens_max_isENS_time":ens_max_isENS_time,"ens_min_isENS_time":ens_min_isENS_time,})else:# take the spatial average mean# -----------------------------#spatial_mean_isOL_time_ens=isOL_time_Ens.groupby(level=[keytime,"Ensemble_nb"])["analysis"].mean()spatial_mean_isOL_time_ens=spatial_mean_isOL_time_ens.reset_index()spatial_mean_isENS_time_ens=isENS_time_Ens.groupby(level=[keytime,"Ensemble_nb"])["analysis"].mean()spatial_mean_isENS_time_ens=spatial_mean_isENS_time_ens.reset_index()select_isOL=spatial_mean_isOL_time_ensselect_isENS=spatial_mean_isENS_time_ensreturnprep_DA
[docs]defDA_plot_time_dynamic(DA,state="psi",nodes_of_interest=[],savefig=False,**kwargs):"""Plot result of Data Assimilation: state estimation evolution over the time"""keytime="time"xlabel="time (h)"ifkwargs.get("start_date")isnotNone:start_date=kwargs["start_date"]xlabel="date"keytime="time_date"prep_DA=prepare_DA_plot_time_dynamic(DA,state=state,nodes_of_interest=nodes_of_interest,**kwargs)if"ax"inkwargs:ax=kwargs["ax"]else:fig=plt.figure(figsize=(6,3),dpi=350)ax=fig.add_subplot()alpha=0.5colors_minmax='darkblue'if"colors_minmax"inkwargs:colors_minmax=kwargs["colors_minmax"]if"keytime"inkwargs:keytime=kwargs['keytime']xlabel="assimilation_times"ylabel=r"pressure head $\psi$ (m)"if"sw"instate:ylabel="water saturation (-)"# --------------------------------------------------------------------------iflen(prep_DA["isENS"])>0:prep_DA["ens_mean_isENS_time"].pivot(index=keytime,columns=["idnode"],# columns=['idnode'],values=["mean(ENS)"],).plot(ax=ax,style=[".-"],color=colors_minmax,)prep_DA["ens_max_isENS_time"].pivot(index=keytime,columns=["idnode"],# columns=['idnode'],values=["max(ENS)"],).plot(ax=ax,style=[".-"],color=colors_minmax,)prep_DA["ens_min_isENS_time"].pivot(index=keytime,columns=["idnode"],# columns=['idnode'],values=["min(ENS)"],).plot(ax=ax,style=[".-"],color=colors_minmax,xlabel="(assimilation) time - (h)",ylabel="pressure head $\psi$ (m)",)lgd=ax.fill_between(prep_DA["ens_max_isENS_time"][keytime],prep_DA["ens_min_isENS_time"]["min(ENS)"],prep_DA["ens_max_isENS_time"]["max(ENS)"],alpha=0.2,color=colors_minmax,label="minmax DA",)if"ens_mean_isOL_time"inprep_DA.keys():prep_DA["ens_mean_isOL_time"].pivot(index=keytime,# columns=["Ensemble_nb",'idnode'],columns=["idnode"],values=["mean(ENS)_OL"],).plot(ax=ax,style=["-"],color="grey",label=False,ylabel="pressure head $\psi$ (m)",)# water saturation (-)prep_DA["ens_min_isOL_time"].pivot(index=keytime,columns=["idnode"],# columns=['idnode'],values=["min(ENS)_OL"],).plot(ax=ax,style=["--"],color="grey",label=False)prep_DA["ens_max_isOL_time"].pivot(index=keytime,columns=["idnode"],# columns=['idnode'],values=["max(ENS)_OL"],).plot(ax=ax,style=["--"],color="grey",label=False)ax.fill_between(prep_DA["ens_mean_isOL_time"][keytime],prep_DA["ens_min_isOL_time"]["min(ENS)_OL"],prep_DA["ens_max_isOL_time"]["max(ENS)_OL"],alpha=0.2,color="grey",label="minmax OL",)ax.set_xlabel(xlabel)# ax.set_ylabel('pressure head (m)')ax.set_ylabel(ylabel)savename="showDA_dynamic"if"savename"inkwargs:savename=kwargs["savename"]ifsavefig==True:plt.savefig(savename+".png",dpi=300)pass